

0040-4039(94)01571-6

New Cytotoxic Sesterterpenes from the Marine Sponge Spongia sp.

Haiyin He^{†*}, Palaniappan Kulanthaivel^{†*} and Bill J. Baker[‡]

[†]Sphinx Pharmaceuticals Corporation, 4 University Place, Durham, NC 27717, USA [‡]Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901, USA

Abstract: Six new cytotoxic sesterterpene lactones, spongianolides A-F (1-6) were isolated from the extracts of the marine sponge *Spongia* sp. The structures were determined by the interpretation of spectral data.

Several natural products bearing the γ -hydroxy butenolide moiety have been isolated from marine sources,¹⁻⁶ and some of them exhibited potent anti-inflammatory⁷ and anti-tumor properties.⁵ In our continuing search for new bioactive substances which modulate protein kinase C (PKC),⁸ we examined extracts of a sponge of the genus *Spongia*. In this paper we describe the isolation, structure elucidation and biological properties of a series of new γ -hydroxy butenolides.

The black-colored Spongia sp. collected in the channel between Ohio and Grassy Keys (-5 m), Florida (voucher specimen FIT 419 on deposit at Florida Institute of Technology, Melbourne, FL), was freeze-dried (480 g) and extracted with EtOH. The crude extract (7.6 g) was fractionated by gel filtration (Sephadex LH-20, MeOH), and the fractions that inhibited PKC (IC₅₀-15 μ g/ml) were combined and repurified by repeated HPLC (C₁₈, MeOH-H₂O) to yield six new sesterterpene lactones, spongianolides A-F (1-6).

The molecular formula of spongianolide A $(1)^9$ was determined to be C₂₇H₄₀O₆ by HRFABMS. The IR bands at 3400 and 1737 cm⁻¹ indicated the presence of alcohol and ester functions. In addition to resonances for one acetate, the ¹H and ¹³C NMR spectra (Tables 1 and 2) showed four methyls attached to quaternary carbons, suggesting a sesterterpenoid structure. The high field signals in the ¹³C NMR spectrum, including four methyls,

five methylenes, two methines and three quaternary carbons, were very similar to those assigned to rings A and B of spongiane type diterpenes.¹⁰ The 13 C resonances of two olefinic carbons at δ 163 (s,C-17) and 116 (d, C-18). a carbonyl at δ 171 (C-19) and a hemiacetal at δ 99 (C-25) indicated the presence of a γ -hydroxy butenolide moiety.¹⁻⁶ The UV absorption band at 264 nm and the ¹H and ¹³C NMR chemical shifts required that the butenolide moiety be conjugated to a trans- disubstituted double bond ($\delta_{\rm H}$ 6.69 and 6.46 J = 16 Hz, $\delta_{\rm C}$ 141.4 and 126.3). The resonance at 6.46 ppm of the disubstituted double bond in addition coupled to an allylic methine signal at 2.12 ppm. This signal was assigned to H-14 as demonstrated by the correlation of H_3 -23 to C-14 and H-14 to C-8 and C-23 in the HMBC experiment, and thus the butenolide side chain is attached to C-14. The acetyl group is attached to a primary alcohol as indicated by the correlations of the carbonyl at δ 171 (C-26) to the methyl at δ 2.08 (H₃-27) and one of the diastereotopic protons at δ 4.39 (H₂-24). The H₂-24 in turn showed a correlation to a quaternary carbon at δ 73 (C-13) which because of its chemical shift should bear a hydroxyl group not accounted so far. Additional HMBC correlations from H3-20 and H3-21 to C-3, C-4 and C-5; H3-22 to C-1, C-5, C-9 and C-10; H₃-23 to C-7, C-8, C-9 and C-14; and H-14 to C-13 supported the structure. The A/B and B/C ring junctions of 1 were confirmed as trans on the basis of the observed NOE from H-9 to H-5 and H-9 to H-14 (Figure 1). Likewise, the assignment of β configuration to the substituents at C-13 and C-14 is based on the observed NOE between H₃-23 and one of the H₂-24 and between H₃-23 and H-15.

Spongianolide B $(2)^{11}$, differed from 1 only in the nature of the ester side chain where the acetyl group is replaced by a γ -hydroxybutyryl group.

Figure 1. NOE data of spongianolide A (1).

16S, $R = COCH_3$ 16*R*, $R = COCH(OH)CH_3$ 5 16S, $R = COCH(OH)CH_3$ 6

Comparison of the ¹H and ¹³C NMR spectra of spongianolides C (3)¹² and D (4)¹³ with those of 1 revealed that the olefinic proton and carbon signals at positions 15 and 16 of 1 were replaced by aliphatic methylene and oxygenated methine signals in 3 and 4. These signals constituted a tetrahydrofuranyl ring system as suggested by proton connectivities of H-14, H-15 and H-16 in the COSY spectra. That 3 and 4 were diastereomeric at C-16 was evident from the coupling constants between H-16 and the diastereotopic H-15 (dd, J=9, 9 Hz in 3 and br d, J=10 Hz in 4). Biosynthetically, compounds 3 and 4 could be derived from 1 by the addition of 13-OH to C-16 to form a tetrahydrofuran ring. The configuration at C-16 for 3 and 4 was determined by NOE experiments. For 4, irradiation of H-16 caused significant enhancements of H-24 and H-15 β , and irradiation of H3-23 caused enhancement of H-24 establishing cis relationship between H-15β, H-16, H-23 and H-24. On the other hand, significant NOE was observed between H-18 and H-24 in 3. It was also observed that with 3 (16R) and 4 (16S) the measured coupling constants between H₂-15 and H-16 were very close to the corresponding values obtained from the molecular mechanics calculations.¹⁴

Spongianolides E (5)¹⁵ and F (6)¹⁶, isomeric at C-16, possessed a γ -hydroxybutyryl ester side chain instead of an acetyl ester side chain as in 3 and 4.

Lactones 1-5 inhibited PKC at IC₅₀ 20-30 μ M and did not inhibit the human 85 kD phospholipase A₂. Compounds 1-4 potently inhibited (IC₅₀ 0.5-1.4 μ M) the proliferation of the mammary tumor cell line MCF-7. After completion of this manuscript, it came to our knowledge that spongianolides C and D (3, 4) have been isolated very recently from a Caribbean sponge.¹⁷ However, these compounds designated as lintenolides A and B were characterized only after acetylation and only partial spectroscopic data were reported for the natural products.

...

 Table 1. ¹H NMR (500 MHz) spectral data of spongianolides

 A-C (1-3).

Table 2.	¹³ C NMR (75 MHz) spectral data o	f spongianolides A
F (1, 2 in	acetone-d ₆ and 3-0	5 in CDCl ₃).	-

	1 (acetone-d ₆)	2 (acetone-d ₆)	3 (CDCl ₃)
1	1.69 (br.d. 13)	1.70 (br.d. 13)	1.64 (m)
•	0.87 (m)	0.88 (m)	0.83 (m)
2	1.63 (m)	1.64 (m)	1.67 (m)
-	1.40 (m)	1.04 (m)	1.02 (m)
3	136 (m)	1.37 (m)	1.42 (010, 15) 1.36 (m)
5	1 17 (ddd 13.5	1.18 (m)	1.30 (m)
	13.5 4)	1.18 (m)	1.14 (b) 00, 13,
5	0.88 (m)	0.89 (m)	13) 086 (m)
6	1.50 (m)	1.52 (m)	1.60 (m)
•	1.30 (m)	1.52 (m)	1.00 (11)
	1.41 (m)	1.42 (11)	1.44 (000, 15.5,
7	157 (m)	153 (br. d. 12)	15.5, 4) 1.50 (m)
'	1.02 (m)	1.05 (01 0, 15)	1.37 (III) 1.19 (ba dal 12
	1.02 (m)	1.04 (m)	1.18 (or dd, 15, 13)
9	0.99 (dd, 13, 3.5)	1.00 (br d. 13)	1.00 (br d. 12)
11	1.62 (ddd, 13, 3.5,	1.63 (br d. 13)	1.78 (br d. 13)
	3.5)		
	1.35 (m)	1.35 (m)	1.26 (br ddd, 13,
			13, 13)
12	2.08 (m)	2.09 (m)	2.19 (br d. 12.5)
	1.37 (m)	1.34 (m)	1.31 (br dd.
		,	13.5. 13.5)
14	2.12 (d. 10.5)	2.13 (d. 11)	1.81 (m)
15*	6.69 (dd. 16, 10.5)	6.72 (dd. 16, 11)	2.22 (ddd. 12.
	6.68	6.69	9. 4.5)
			1.88 (m)
16	6.46 (d. 16)	6.44 (d. 16)	4.90 (dd. 9, 9)
18*	5.92 (s)	5.94 (s)	6.04 (s)
	5.96	5.98	
20	0.82 (3H, s)	0.83 (3H, s)	0.83 (3H, s)
21	0.85 (3H. s)	0.85 (3H, s)	0.86 (3H, s)
22	0.87 (3H. s)	0.88 (3H, s)	0.85 (3H, s)
23	1.04 (3H, s)	1.06 (3H. s)	0.87 (3H. s)
24ª	4.39, 4.04 (AB.	4.40. 4.15 (AB.	4.45. 3.71 (AB.
	11.5)	11.5)	11.5)
	4.39. 4.00	4.41, 4.08	11.57
25ª	6.37 (br s)	6.39 (br s)	6.14 (br s)
		6.36	
27	2.08 (3H. a)	2.47 (dd. 15. 3)	2.10 (3H, s)
	(•)	2.45 (dd. 15, 5.5)	(, •/
28		4.15 (m)	
29		1.17 (3H. d. 6)	

	i*	2	3 ^a	4	5	6
1	40 7 (t)	40.6	40.0	40.0	39.9	40.0
2	19.0 (t)	18.9	18.0	18.0	18.0	17.9
3	42.9 (t)	42.9	42.1	42.0	42.0	42.0
4	34.0 (s)	33.9	33.4	33.3	33.3	33.3
5	57.5 (d)	57.4	57.1	57.0	57.1	57.0
6	193 (t)	19.3	18.5	18.5	18 5	18.5
7	43.5 (t)	43.4	41.4	41.2	41.3	41.1
8	39.1 (s)	39.1	37.5	37.4	37.4	37.4
9	61.3 (d)	61.2	61.3	61.3	61.2	61.1
10	38.4 (s)	38,4	36.7	36.5	36.7	36,5
11	19.6 (t)	19.5	19.2	19.0	19.2	18.9
12	58.5 (t)	38.0	34.1	34.8	34.8	34.8
135	73.8 (s) 73.7 (s)	73.9 73.7	82.3	82.4	82.2	82.6
14 ^b	68.15 (d)	68.00	61.9	59.6	61.9	59.6
•••	68.10 (d)	67.97	••••		0115	
15 ^b	141.4 (d)	141.5 (d)	28.7	(i) 28.7 (i)	28.8 (t)	28.4 (1)
	141.0 (d)	141.0		(,) (,)		
16 ^b	126.3 (d)	126.3	74.4	72.6	74.5	72.6
	126.1 (d)	126.0				
17 ^b	162 7 (e)	162.8	160 5	160 3	160 5	168.6
17	162 5 (s)	162.8	109.5	109.5	109.5	108.0
1.00	116 2 (4)	116.0	114 0	110 1	1170	
10	116.5 (d)	116.2	110.9	118.1	117.0	117.3
10	1715(a)	1715	170.6	170 5	171 1	170.5
20	22.9 (a)	22.7	22 4	170.5	21.2	22.2
20	21.8 (q)	337	21.3	212	33.3	21 2
22	16.8 (q)	16.8	16.0	16.0	16.0	16.0
23	179 (a)	17.8	16.9	16.7	17.0	16.6
246	68.0 (4)	68.0	65 1	62.2	64.0	61.6
24	67 9 (1)	67.7	051	03.5	04.9	02.0
acb.	07.3 (1)	07.7	00.7	00.4	<u></u>	
25	98.65 (d)	98.0	98.7	99.4	98 0	98.1
26 ⁰	171.4 (s)	172.5	171.4	171.5	172.7	172.7
	171.2 (s)	172.3				
27 ^D	20.9 (q)	44.7 (t)	21.0 ((g) 21.1 (g)) 43.2 (t)	43.7 (t)
		44.5 (t)				
28		65.1 (d))		65.0 (d)	65.2 (d)
29		23.6 (q))		22.8 (q)	22.6 (q)

a Two sets of signals were observed in 1 and 2 at a ratio of -1:1. We attribute this to either rotamerization along the C-16/C-17 bond or epimerization at C-25 of the γ -hydroxy butenolide molety. a Assignments were confirmed by HMBC (J=6 Hz) experiments. b Two sets of signals were observed in 1 and 2 at a ratio of -1:1.

We attribute this to either rotamerization along the C-16/C-17 bond or epimerization at C-25 of the y-hydroxy butenolide moiety. Acknowledgement: We thank Kiyomi Kalter and Bill Janzen for the PKC assays, Jim Darges, Divann Coefield and Laurel Adams for the cell assays; Jill Baker, Agnes Holmes, Bill Robson and Bob Kopitzke for collecting the sponge; and Christie Boros for helpful discussions during the preparation of the manuscript.

References and Notes

- 1.
- de Silva, E. D.; Scheuer, P. J. Tetrahedron Lett. 1980, 21, 1611. de Silva, E. D.; Scheuer, P. J. Tetrahedron Lett. 1981, 22, 3147. 2.
- Kernan, M. R.; Faulkner, D. J.; Jacobs, R. S. J. Org. Chem. 1987, 52, 3081. Sullivan, B.; Faulkner, D. J. Tetrahedron Lett. 1982, 23, 907. 2
- 4
- 5. De Rosa, S.; De Stefano, S.; Zavodnik, N. J. Org. Chem. 1988, 53, 5020. Crews, P.; Jimenez, C.; O'Neil-Johnson, M. Tetrahedron 1991, 47, 3585. б.
- (a) Glaser, K. B.; Jacobs, R. S. Biochem. Pharm. 1986, 35, 449. (b) Jacobs, R. S.; Culver, P., Langdon, R.; O'Brien, T.; 7. White, S. Tetrahedron 1985, 26, 5827.
- 8. Kulanthaivel, P.; Hallock, Y. F.; Boros, C.; Hamilton, S. M.; Janzen, W. P.; Ballas, L. M.; Loomis, C. R.; Jiang, J. B.; Katz, B.; Steiner, J. R.; Clardy, J. J. Am. Chem. Soc. 1993, 115, 6452.
- 9. 1 $[\alpha]_D = -31.9^\circ$ (c 1.4, MeOH); UV (MeOH): λ_{max} 264 nm ($\epsilon = 15820$); IR (neat): 3400, 2928, 1737, 1643 cm⁻¹; HRFABMS: Obsd m/z 461.2906. Calcd for C₂₇H₄₁O₆ m/z 461.2902; ¹H NMR and ¹³C NMR data see Tables 1 and 2.
- 10. (a) Ksebati, M. B.; Schmitz, F. J. J. Org. Chem. 1987, 52, 3766. (b) Karuso, P.; Taylor, W. C. Aust. J. Chem. 1986, 39, 1629.
- 11. 2 $[\alpha]_D = -25.7^{\circ}$ (c 1.1, MeOH); UV (MeOH); λ_{max} 265 nm ($\epsilon = 14545$); IR (neat): 3410, 2928, 1753, 1732, 1642 cm⁻¹; HRFABMS: Obsd m/z 505.3149. Calcd for C29H45O7 m/z 505.3164; ¹H and ¹³C NMR data see Tables 1 and 2.
- 12. 3 $[\alpha]_D = +38^\circ$ (c 2.0, MeOH); UV (MeOH): λ_{max} 218 nm ($\epsilon = 9340$); IR (neat): 3330, 2936, 1741 cm⁻¹: HRFABMS: Obsd m/z 461.2906. Cald for C27H41O6 m/z 461.2902; ¹H and ¹³C NMR data see Tables 1 and 2.
- 13. 4 $[\alpha]_D = -16.9^\circ$ (c 1.1, MeOH); UV (MeOH): λ_{max} 218 nm ($\epsilon = 9510$); IR (neat): 3330, 2931, 1741 cm⁻¹; HRFABMS: Obsd m/z 461.2901, Calcd for C27H41O6 m/z 461.2902; H NMR (500 MHz, CDCl3): 8 6.19 (br, H-25), 6.03 (s, H-18), 4.99 (br d, 10, H-16), 4.35, 4.05 (AB, 11.5, H₂-24), 2.26 (br dd, 11.5, 3, Hβ-15), 2.23 (ddd, 12, 2, 2, H-12), 2.11 (3H, s, H₃-27), 1.80 (br d, 12, H-11), 1.12 (ddd, 13.5, 13.5, 3.5, H-3), 1.00 (br d, 12, H-9), 0.86 (3H, s, H3-22), 0.85 (6H, s, H3-21 and H3-23), 0.82 (3H, s, H₃-20); ¹³C NMR data see Table 2.
- 14. Macromodel V4.0; Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440.
- 15. 5 $[\alpha]_D = +45^\circ$ (c 2.4, MeOH); UV (MeOH): λ_{max} 212 nm ($\epsilon = 9640$); IR (neat): 3350, 2932, 1738 cm⁻¹; HRFABMS: Obsd m/z 505.3160. Calcd for C29H45O7 m/z 505.3164; ¹H NMR (300 MHz, CDCl3): 8 6.12 (s, H-25), 6.05 (s, H-18), 4.90 (dd, 8, 8, H-16), 4.45, 3.77 (AB, 11.5, H2-24), 4.24 (tq. 7, 6.5, H-28), 2.51 (2H. d. 7, H2-27), 1.25 (3H. d. 6.5, H3-29), 0.98 (br d, 12, H-9), 0.86 (3H, s, H₃-23), 0.85 (3H, s, H₃-21), 0.83 (3H, s, H₃-22), 0.82 (3H, s, H₃-20); ¹³C NMR data see Table 2.
- 16. 6 $[\alpha]_D = -9.4^\circ$ (c 0,7, MeOH); UV (MeOH): λ_{max} 212 nm ($\epsilon = 10,030$); IR (neat): 3360, 2931, 1737 cm⁻¹; HRFABMS: Obsd m/z 505.3165. Calcd for C29H45O7 m/z 505.3164; ¹H NMR (300 MHz, CDCl3): 8 6.14 (br, H-25), 5.97 (s, H-18), 4.95 (br d, 10, H-16), 4.54, 3.99 (AB, 11.5, H₂-24), 4.19 (m, H-28), 2.48 (2H, m, H₂-27), 1.24 (3H, d, 6.5, H₃-29), 0.98 (br d, 12, H-9). 0.84 (9H, s. H₂-21, H₂-22, and H₂-23), 0.82 (3H, s, H₃-20); ¹³C NMR data see Table 2.
- 17. Conte, M.R.; Fattorusso, E.; Lanzotti, V.; Magno, S.; Mayol, L. Tetrahedron 1994, 50, 849.

(Received in USA 25 May 1994; accepted 4 August 1994)